Τετάρτη, 21 Οκτωβρίου 2015

Η λύση της εικασίας Erdos από τον Terence Tao

Ένα μαθηματικό πρόβλημα το οποίο ως πρόσφατα είχε απαντηθεί μόνο μερικώς με τη βοήθεια ενός υπολογιστή ο οποίος παρείχε μια απόδειξη με όγκο όσο εκείνος ολόκληρης της Wikipedia λύθηκε οριστικά και με απλούστερο τρόπο από έναν άνθρωπο.
Το αποτέλεσμα δεν αναμένεται να έχει σημαντικές πρακτικές εφαρμογές. Αναδεικνύει όμως τις διαφορές ανάμεσα σε δύο προσεγγίσεις που υπάρχουν σήμερα στα μαθηματικά: τον πληθοπορισμό ή crowdsourcing (η προσφυγή στη βοήθεια πλήθους εθελοντών μέσω ανοιχτής πρόσκλησης στο κοινό) και τους ηλεκτρονικούς υπολογιστές.

Η εικασία του Ερντος
Ο Τάο μικρός μαζί με τον Έρντος

Ο Τέρενς Τάο από το Πανεπιστήμιο της Καλιφόρνιας στο Λος Αντζελες δημοσίευσε μια απόδειξη για την ασυμφωνία του Ερντος, ένα πρόβλημα που αφορά τις ιδιότητες μιας άπειρης τυχαίας αλληλουχίας από +1 και -1.
Τη δεκαετία του 1930 ο ούγγρος μαθηματικός Πολ Ερντος είχε αναρωτηθεί αν τα μοτίβα και η δομή μιας τέτοιας αλληλουχίας θα έπρεπε πάντα να βρίσκονται μέσα στην τυχαιότητα. Ενας τρόπος για να μετρηθεί αυτό είναι με τον υπολογισμό μιας τιμής η οποία είναι γνωστή ως ασυμφωνία. Κάτι τέτοιο απαιτεί την πρόσθεση όλων των +1 και -1 που περιλαμβάνονται σε κάθε δυνατή υποαλληλουχία. Ισως νομίζετε πως όλα αυτά τα συν και πλην αλληλοακυρώνονται για να δώσουν το μηδέν, όμως ο Ερντος είχε εικάσει ότι καθώς οι υποαλληλουχίες γίνονται μεγαλύτερες το σύνολο αυτής της πρόσθεσης θα έπρεπε και αυτό να αυξάνεται. Στην πραγματικότητα είχε πει ότι η ασυμφωνία θα έπρεπε να είναι άπειρη, κάτι το οποίο σημαίνει ότι η πρόσθεση συνεχίζεται αιωνίως.
Τον περασμένο χρόνο ο Αλεξέι Λισίτσα και ο Μπορίς Κόνοφ από το Πανεπιστήμιο του Λίβερπουλ στη Βρετανία χρησιμοποίησαν έναν υπολογιστή για να αποδείξουν ότι η ασυμφωνία είναι πάντοτε μεγαλύτερη του δύο. Η απόδειξη στην οποία κατέληξαν είχε όγκο 13 gigabytes - περίπου όσο όλα μαζί τα κείμενα της Wikipedia - και κανένας άνθρωπος δεν θα μπορούσε ούτε καν να ελπίζει ότι θα την ελέγξει.

Ανθρωπος - αλγόριθμος=1-0

Ο Τέρενς Τάο με τη βοήθεια του πληθοπορισμού χρησιμοποίησε πιο παραδοσιακά μαθηματικά για να αποδείξει ότι ο Ερντος είχε δίκιο: η ασυμφωνία είναι άπειρη, όποια και αν είναι η αλληλουχία που θα επιλέξει κάποιος (arxiv.org/abs/1509.05363).
Ο κ. Λισίτσα απέδωσε τα εύσημα στον κ. Τάο για το γεγονός ότι πέτυχε αυτό που ο αλγόριθμος του ιδίου και του συνεργάτη του δεν κατόρθωσε να κάνει. «Αυτό είναι ένα χαρακτηριστικό παράδειγμα υψηλής ποιότητας ανθρώπινων μαθηματικών» δήλωσε. Παρ' όλα αυτά οι μαθηματικοί καταφεύγουν όλο και περισσότερο στις μηχανές για βοήθεια, τάση η οποία αναμένεται να συνεχιστεί στο μέλλον

Πηγή: Το Βήμα

Άλλα θέματα

Related Posts Plugin for WordPress, Blogger...