Ποιός είναι ο μεγαλύτερος γνωστός πρώτος αριθμός;

Πρώτοι αριθμοί είναι οι αριθμοί που διαιρούνται μόνο με τον εαυτό τους και τη μονάδα, όπως οι 2, 3, 5, 7, 11, 13, κ.ο.κ. Οι πρώτοι αριθμοί που γράφονται στη μορφή 2n-1 (n= ακέραιος), ονομάζονται πρώτοι του Mersenne, από το όνομα του Γάλλου μοναχού Marin Mersenne, τον πρώτο που διερεύνησε αριθμούς τέτοιας μορφής.

Το πρόγραμμα Great Internet Mersenne Prime Search (GIMPS) ανακοίνωσε χτες την ανακάλυψη του μεγαλύτερου (μέχρι σήμερα) πρώτου αριθμού: πρόκειται για τον 2136279841-1 που διαθέτει 41.024.320 δεκαδικά ψηφία. Το προηγούμενο ρεκόρ κατείχε εδώ και 6 χρόνια ο αριθμός 282589933-1 που διαθέτει 24.862.048 ψηφία. Επισημαίνεται ότι δεν είναι γνωστό αν στο διάστημα μεταξύ αυτών των δύο αριθμών υπάρχει άλλος πρώτος αριθμός.

Ο νέος πρώτος αριθμός που αναφέρεται και ως M136279841, μπορεί να υπολογιστεί αν πολλαπλασιάσουμε 136.279.841 φορές τον αριθμό 2 με τον εαυτό του και στη συνέχεια να αφαιρέσουμε το 1.

Γράφει ο Δημήτρης Χριστοδούλου στο βιβλίο «ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΗΝ ΑΡΧΑΙΑ ΑΛΕΞΑΝΔΡΕΙΑ, ΕΥΚΛΕΙΔΗΣ – ΑΡΧΙΜΗΔΗΣ» (εκδόσεις Ευρασία):
«… Οι πρώτοι αποτελούν τους οικοδομικούς λίθους στο βασίλειο των αριθμών, γιατί όλοι οι άλλοι αριθμοί είναι σύνθετοι, εφόσον παράγονται παίρνοντας γινόμενα πρώτων. Ακόμα και η πιο επιπόλαια μελέτη αποκαλύπτει ότι οι πρώτοι αραιώνουν όπως προχωρούμε σε ολοένα μεγαλύτερους αριθμούς. Εγείρεται λοιπόν το ερώτημα: σταματούν κάπου; Δηλαδή υπάρχει κάποιος τελευταίος πρώτος και όλοι οι αριθμοί που τον ακολουθούν είναι σύνθετοι; Ο Ευκλείδης ήταν ο πρώτος που το απάντησε και μάλιστα κατά τον τέλειο τρόπο.
Κανένας ηλεκτρονικός υπολογιστής δεν θα μπορούσε να απαντήσει στο ερώτημα, εφόσον είναι ερώτημα που αφορά το άπειρο. Μόνο ο νους μπορούσε. Εδώ είναι λοιπόν η απόδειξη του Ευκλείδη. Ας υποθέσουμε ότι, τουναντίον, το σύνολο των πρώτων αριθμών είναι πεπερασμένο, επομένως μπορούμε να τους απαριθμήσουμε κατά αύξουσα τάξη, παραλείποντας την μονάδα:
p1• p2• … • pn
Aς εξετάσουμε τότε τον αριθμό
Μ=Π+1
όπου Π είναι το γινόμενο
Π= p1• p2• … • pn
Εφόσον ο Μ είναι μεγαλύτερος από τον τελευταίο πρώτο, τον pn, πρέπει να είναι σύνθετος αριθμός. Επομένως, ο Μ έχει κάποιον πρώτο παράγοντα, ας πούμε τον q. Άρα ο q είναι ένας από τους p1, p2, … , pn.
Ωστόσο, εάν q=pk
 για κάποιο k=1, …, n, τότε, εφόσον ο q διαιρεί τον Μ και επίσης προφανώς διαιρεί το γινόμενο Π, κατ’ ανάγκη διαιρεί την διαφορά τους, δηλαδή την μονάδα. Τούτο όμως είναι άτοπο. Γιατί κανείς αριθμός, εκτός από την ίδια την μονάδα, δεν διαιρεί την μονάδα, και έχουμε παραλείψει την μονάδα από την παραπάνω απαρίθμηση.
Επομένως, το αντίθετο της αρχικής μας υποθέσεως πρέπει να ισχύει, δηλαδή το σύνολο των πρώτων αριθμών πρέπει να είναι άπειρο.
Όσο απλή κι αν φαίνεται αυτή η απόδειξη, θεωρείται ακόμα ως μια από τις κομψότερες σε όλα τα μαθηματικά. Ας σκεφτούμε τις επαναστάσεις στην ιστορία της σκέψεως που περιέχονται σε αυτό το απλό κομμάτι μαθηματικών.
Πρώτον, ότι ο νους μπορεί να θέσει ένα ερώτημα που αφορά το άπειρο . Δεύτερον, ότι ο νους μπορεί να δώσει την απάντηση κατά έναν καθοριστικό και μη αμφισβητήσιμο τρόπο. Τρίτον, ότι η αλήθεια βρίσκεται δείχνοντας ότι η αντίθετη υπόθεση οδηγεί σε άτοπο. Όλες οι μεγάλες αποδείξεις στα μαθηματικά από την εποχή του Ευκλείδη μέχρι σήμερα έχουν χρησιμοποιήσει την ευκλείδεια μέθοδο της εις άτοπον απαγωγής…»

πηγή: https://www.mersenne.org/primes/?press=M136279841

https://physicsgg.me/

Σχόλια

Δημοφιλείς αναρτήσεις